

Ultra high definition video transmission over dynamically configured SDN (Dynamic SDN)

Hiroyuki Kimiyama, Ph.D
Senior Research Engineer
NTT Network Innovation Laboratories

Table of contents

- ◆ Introduction
 - Background and brief introduction of "Dynamic SDN"
- ◆ What is our proposal: "Dynamic SDN"
 - Mechanism and Implementation
- Experimental results
 - Uncompressed HD transmission between Japan and US through "Dynamic SDN" for evaluation
- Other applications
- **♦** Conclusion

History

i-Visto XMS

i-Visto Gateway XG-1

- Uncompressed HD
- Uncompressed 4K
- Uncompressed 8K ...

and much higher resolution video over IP Network in real time with scalability *1

*1 H. Kimiyama, et. al, "Uncompressed 8K-Video System Using High-Speed Video Server System Over IP Network", Proc. of Asia Pacific Conference on Multimedia and Broadcasting (APMediaCast 2015), pp.99-105, 2015

You can get these as *commercial products*!

Uncompressed 8K video system

- ◆ We developed "strict" synchronization mechanism for these equipment in order to handle 8K video (Please see ref. *1 in previous slide)
 - 8K video equipment for broadcasting only allow μsec jitter

Issue for using over shared IP networks

- How we can use these products on existing shared IP network?
 - ex. Internet2, JGN-X, and so on
- Before using, we need
 - Provisioning,
 - Negotiation,
 - Reservation, ...
- But, sometimes congested in very short period even if bandwidth is enough (10GxN, 100G)
 - ◆ It causes jitter or packet loss
- ◆ In worst case, we cannot transfer very high quality video even if we prepared carefully because it is the SHARED network
- We need new mechanism which enables to transmit very high quality constantly

Motivation & proposal

- We newly research and develop Application centric transport mechanism
 - i.e. It enables Application to requests for re-routing packets to other less crowded path[s] immediately when congestion is observed
 - ◆ Application ONLY knows transmitted video quality

◆ Our proposal

- Configure virtualized network instantly over existing shared IP network using OpenFlow switches: "Dynamic SDN" *2
 - Easy to re-route by reconfiguring OpenFlow switches with very short period
 - "Slice" based virtualization takes little more time for reconfiguration

^{*2} H. Kimiyama, et al, "High-resolution Video Transmission Network System Using Dynamic SDN", Proc. of 21st Asia-Pacific Conference on Communications Innovating Communications Networks toward Sustainable and Smart Society (APCC 2015), pp.338-342, 2015

Basic Idea of Dynamic SDN

- Before sending video packets -

Mechanism of relaying IP packets

- OpenFlow switch relays IP packets with "NAT"
 - NAT: Network Address Transformation
 - Receive information about what IP packets relay to what IP address from the "Control node"
 - ◆ Each video stream is identified with source IP address, source port number and destination port number
 - Replace destination IP address with given IP address
 - Repeat this process in next
 OpenFlow switch

Basic Idea of Dynamic SDN

- re-routing process -

Implementation

- OpenFlow switch (OFS)
 - General PC and OpenFlow switch software "Lagopus"
 - https://lagopus.github.io/
- OpenFlow controller (OFC)
 - Major controller software "Ryu"
 - http://osrg.github.io/ryu/
 - ◆ Install into the same PC
- Network monitor
 - ◆ NM10G (aka. viaPlatz Stream monitor)
 - Commercial traffic monitor
 - http://www.viaplatz.com/4k/pdf/ feature4k_en.pdf
- ◆ Control node
 - Originally implemented
 - ◆ Control OFS with REST message via OFC

Implementation (Cont'd)

Experiment system configuration

- Outline of uncompressed HD transmission system over R&E network
 - Uncompressed HD server: Generate on-demand video stream
 - IP video converter: Convert received video packets to video signal

Experiment result

- Measured throughput with 10-msec resolution during re-routing
 - Overlapped video traffic is too small to absorb with IP-video converter's buffer

Multiple paths transport and video switching

- Demos in Internet2 Technology Exchange 2015 (Cleveland) and SC15 (Austin)
- Send two uncompressed 4K video via 4 individual paths

Video traffic data with 10msec resolution

Video traffic data with 10msec resolution

Conclusion

- We propose configuration method of application controllable virtualized network (VN): "Dynamic SDN"
- We show implementation method and experimental results
 - The method enables to
 - Reconfigure virtualized network without interruption of video transmission
 - Adapt to multiple path video transmission

◆ Future plan

- Develop automatically reconfiguration mechanism
- ◆ Improve start up synchronization during multipath transmission
- And so on

We really thanks!!

