

Sébastien Tandel

- Working within HPE Aruba CTO as a Principal Architect
 - Technologist with sound business knowledge
 - Software engineer with sound knowledge of hardware
 - Product focused with sound experience in all innovation waves (research & advanced development)
- Lead me to drive many programs from Software-Defined Infrastructure & Intelligent Edge to Security Analytics
- Contributions in several aspects of SDN / NFV since 2010
 - First Software-Defined Lync demo @ ONS'13
 - First Software-Defined Security demo (IPS coupled to security analytics) @ ONS'14
 - First HW accelerated SFC (MAC Chaining) including legacy physical SFCs demo @ Sigcomm'16
 - Distributed Software-Defined Load Balancer, IoT Universal Profiler (identification & anomaly behavior detection)

views and opinions expressed are my own and does not necessarily reflect views or opinions of my employer

SDN & NFV Markets by 2020

Gartner Hype Cycle => Customer Focused and Realist!

Research ... Where should I go?

I'll tell a story about security although you can apply it as model to other use cases

Physical IPS appliance: 10,000 feet hardware architecture

Enterprise

a story of decomposition : pre-filtering as micro-VNF

µVNF changes cost/performance

IPS	Max Inspection throughput (Gb/s)	Listing price (US\$)	US\$ per Gb/s of inspection
TPT S7500	20	500000	25000
Snort (4 proc)	2	10000	5000
pre-filtering μVNF + Snort	20	10000	500

- ✓ State-of-the-art Product Performance
- √ 50x cheaper than TippingPoint

1. Research in physical µVNF

usual suspects: compression, encryption > take away: many other opportunities

Software-Defined Security: IPSaaS model

Creating a Security Control plane

2. Software-Defined Security

Opportunity for high-level security policies BTW, Service Function Chain still challenge

Software-Defined Security: Closing the loop

Making Sense of Security Events & Automate Remediation Actions

3. Big Data applied to Security

Big Data: possible to analyze all packets? Where in the stack: Cloud, Edge? Security Analytics: how to make sense?

Summary

- 1. High Impact: Holistic Approach to Solve Customer Headaches
- 2.3 research aspects for the next 2-5 years:
 - -Physical µVNF; Software-Defined Security; Big Data applied to Security
 - -It's a model working for other use cases
- 3. From idea to market? An top-down approach
 - Cloud-first (SaaS) for fast TTM
 - Edge Computing model
 - > μVNF for better scale and cost performance
 - -Open APIs to avoid vendor lock-in & fragmentation

Thank You

sta@hpe.com www.slideshare.net/standel

Backup

Current Infrastructure Security Architecture

Security boxes at fixed place, manually connected Edge / East-West weakly protected => BYOD, IoT

Security boxes unaware of each other: No collaboration => security gaps

Software-Defined Security: a Security Control Plane to Rule them All Security Platform Sensor Coordination Security **Events** DNS Near real-time policy enforcement Réal-time DDoS Sensor Policy enforcement Signals Ex: DNS reqs Infrastructure **Hewlett Packard** Enterprise

Software-Defined Security & Intelligent Edge

Key Take Aways

Key Take Aways

