

The Science DMZ: Recent Developments

Eli Dart, Network Engineer ESnet Science Engagement Lawrence Berkeley National Laboratory

WRNP17

Belém, Brazil

May 16, 2017

© 2017, Energy Sciences Network

Overview

- Science DMZ As Platform
- Modern Research Data Portal
- Pacific Research Platform
 - PRP
 - NRP
- Note: This talk assumes you already understand the Science DMZ
 - If you haven't encountered the Science DMZ, several folks in RNP can help you, including Leandro Ciuffo and Alex Moura
 - Or check out the fasterdata knowledgebase:
 - <u>http://fasterdata.es.net/science-dmz/</u>

Science DMZ As A Platform

- Once there are many Science DMZs in your network, more things become possible
- Easy file transfer is good, but what else can we do?
 - Update the architecture of data portals
 - Build services between institutions
 - Interconnect facilities
- Several efforts underway to do these things

Science Data Portals

- Large repositories of scientific data
 - Climate data
 - Sky surveys (astronomy, cosmology)
 - Many others
 - Data search, browsing, access
- Many scientific data portals were designed 15+ years ago
 - Single-web-server design
 - Data browse/search, data access, user awareness all in a single system
 - All the data goes through the portal server
 - In many cases by design
 - E.g. embargo before publication (enforce access control)

Legacy Portal Design

- Very difficult to improve performance without architectural change
 - Software components all tangled together
 - Difficult to put the whole portal in a Science DMZ because of security
 - Even if you could put it in a DMZ, many components aren't scalable
- What does architectural change mean?

Example of Architectural Change – CDN

- Let's look at what Content Delivery Networks did for web applications
- CDNs are a well-deployed design pattern
 - Akamai and friends
 - Entire industry in CDNs
 - Assumed part of today's Internet architecture
- What does a CDN do?
 - Store static content in a separate location from dynamic content
 - Complexity isn't in the static content it's in the application dynamics
 - Web applications are complex, full-featured, and slow
 - Databases, user awareness, etc.
 - Lots of integrated pieces
 - Data service for static content is simple by comparison
 - Separation of application and data service allows each to be optimized

Classical Web Server Model

- Web browser fetches pages from web server
 - All content stored on the web server
 - Web applications run on the web server
 - Web server may call out to local database
 - Fundamentally all processing is local to the web server
 - Web server sends data to client browser over the network
- Perceived client performance changes with network conditions
 - Several problems in the general case
 - Latency increases time to page render
 - Packet loss + latency cause problems for large static objects

Solution: Place Large Static Objects Near Client

- CDN provides static content "close" to client
 - Latency goes down
 - Time to page render goes down
 - Static content performance goes up
 - Load on web server goes down (no need to serve static content)
 - Web server still manages complex behavior
 - Local reasoning / fast changes for application owner
- Significant win for web application performance

CDN Data Server

CDN

Client Simply Sees Increased Performance

- Client doesn't see the CDN as a separate thing
 - Web content is all still viewed in a browser
 - Browser fetches what the page tells it to fetch
 - Different content comes from different places
 - User doesn't know/care
- CDNs provide an architectural solution to a performance problem
 - Not brute-force
 - Work smarter, not harder

Architectural Examination of Data Portals

- Common data portal functions (most portals have these)
 - Search/query/discovery
 - Data download method for data access
 - GUI for browsing by humans
 - API for machine access ideally incorporates search/query + download
- Performance pain is primarily in the data handling piece
 - Rapid increase in data scale eclipsed legacy software stack capabilities
 - Portal servers often stuck in enterprise network
- Can we "disassemble" the portal and put the pieces back together better?
 - Use Science DMZ as a platform for the data piece
 - Avoid placing complex software in the Science DMZ

Legacy Portal Design

Next-Generation Portal Leverages Science DMZ

Put The Data On Dedicated Infrastructure

- We have separated the data handling from the portal logic
- Portal is still its normal self, but enhanced
 - Portal GUI, database, search, etc. all function as they did before
 - Query returns pointers to data objects in the Science DMZ
 - Portal is now freed from ties to the data servers (run it on Amazon if you want!)
- Data handling is separate, and scalable
 - High-performance DTNs in the Science DMZ
 - Scale as much as you need to without modifying the portal software
- Outsource data handling to computing centers or campus central storage
 - Computing centers are set up for large-scale data
 - Let them handle the large-scale data, and let the portal do the orchestration of data placement

The Pacific Research Platform Creates a Regional End-to-End Science-Driven "Big Data Freeway System"

NSF CC*DNI Grant \$5M 10/2015-10/2020

- PI: Larry Smarr, UC San Diego Calit2
- Co-Pls:
 - Camille Crittenden, UC Berkeley CITRIS,
 - Tom DeFanti, UC San Diego Calit2,
 - Philip Papadopoulos, UC San Diego SDSC,
 - Frank Wuerthwein, UC San Diego Physics and SDSC

Source: John Hess, CENIC

PRP Provides Interoperability

- Science DMZs at participating sites ensure interoperability
- PRP engineers work to ensure they interoperate
 - Globus data transfer between DTNs
 - perfSONAR
- Some variation in DTNs
 - Some have FIONA DTNs
 - FIONA == Flash I/O Network Appliance
 - Designed by PRP engineers at UC San Diego
 - <u>https://fasterdata.es.net/science-dmz/DTN/fiona-flash-i-o-network-appliance/</u>
 - Some have DTNs connected to HPC storage
- Key they all interoperate, removing integration burden from scientists

PRP Science Drivers

- Multiple science areas
 - Astronomy and astrophysics
 - Biomedical applications
 - Life sciences
 - Particle physics
 - Virtual reality and data visualization
- <u>http://prp.ucsd.edu/</u>

National Research Platform (NRP)

- Replicate the PRP on a national scale
- Interoperable, high-performance cyberinfrastructure
 - Built to serve domain science
 - Scale up to ~200 institutions
- First workshop to be held this summer
 - Domain science input
 - Policy questions
 - Architecture, scalability
 - Include campus IT, regional networks, national networks, funding agencies, etc. in a common conversation.

Petascale DTN Project

- Another example of building on the Science DMZ
- Supports all data-intensive applications which require large-scale data placement
- Collaboration between HPC facilities
 - ALCF, NCSA, NERSC, OLCF
- Goal: per-Globus-job performance at 1PB/week level
 - 15 gigabits per second
 - With checksums turned on, etc.
 - No special shortcuts, no arcane options
- Reference data set is 4.4TB of astrophysics model output
 - Mix of file sizes
 - Many directories
 - Real data!

Petascale DTN Project

© 2017, Energy Sciences Network

ESnet

19 - ESnet Science Engagement (engage@es.net) - 5/15/17

Thanks!

Eli Dart <u>dart@es.net</u> Energy Sciences Network (ESnet) Lawrence Berkeley National Laboratory

http://fasterdata.es.net/ http://my.es.net/ http://www.es.net/

Extra Slides

What Is Science Engagement?

- Technology people working with scientists to help solve problems
 - Improve data transfer performance
 - Improve data workflows (e.g. to require less human effort)
 - Improve experiment operations
 - ...and more...
- Using experience gained from helping scientists to improve cyberinfrastructure
 - Network design
 - Tool design
 - System design

Engagement Is Important: Old Model

- Scientist as integrator
 - Requires scientists to discover new technologies
 - Requires scientists to become expert in new technologies
 - Requires scientists to assemble distinct technologies into an integrated solution that works for them
 - Some scientists do this brilliantly most do not

Engagement Is Important: New Model

- Scientist as collaborator
 - Technologists understand technology
 - Technologists understand enough of the science to see how technology fits
 - Technologists help scientists adopt a useful solution
 - This is much more productive, and requires science engagement

