Internet traffic measurements

Renata Teixeira (Inria)

Why measure traffic?

- Performance analysis
- Anomaly and intrusion detection
- Network engineering

Traffic at different granularities

- IP-level packets
 - Capture per-packet information
- Flows
 - Statistics of packets grouped into flows
- Network interface
 - Statistics of packets that traverse a network interface

Outline

- Motivation and definitions
- Tools for measuring traffic
 - Packet capture
 - Interface counts
 - Flow capture
- Traffic matrix
- Trace anonymization
- Summary

Packet capture on end systems

- Basic method
 - Capture and record packets passing through an interface

Tools

- tcpdump
 - Command-line packet capture
- libpcap
 - C/C++ library for packet capture
- Wireshark
 - Packet capture and analysis

Possible measurement artifacts

- Dropped packets are common under high utilization
 - Inspect report of dropped packets
- Other less frequent artifacts
 - Fail to report drops
 - Falsely report drops
 - Duplicate packets
 - Re-ordered packets
 - Misfilter

How to capture packets on point-topoint links?

Port mirroring

- Basic method
 - Copies packets from one or more ports to a mirroring port
 - Run packet capturing tool on host connected to mirroring port

Network Tap

- Basic method
 - Electrical or optical splitter on monitored link
 - Monitoring host with specialized network interface and interface driver

Comparison

Port mirroring

- Pros
 - Easy to setup
 - Low cost
- Cons
 - Hardware and media errors are dropped
 - Packets may be dropped at high utilization

Тар

- Pros
 - Monitor all packets
 - Eliminates risk of dropped packets
- Cons
 - Expensive

High-speed capture with commodity hardware

- Key idea
 - Direct access to NIC (i.e., bypass kernel)
 - Parallelism
- Tools
 - TStat
 - ntop
 - WAND

Outline

- Motivation and definitions
- Tools for measuring traffic
 - Packet capture
 - Interface counts
 - Flow capture
- Traffic matrix
- Trace anonymization
- Summary

Interface counts

- Basic method
 - Routers log simple statistics (bytes/packets)
 - Total values since interface initialized
 - Request statistics using SNMP (MIB-II MIB)

Example properties

- Number of In/Out bytes (total, unicast, non-unicast)
- Number of In/Out packets (total, unicast, non-unicast)
- Number of In/Out discarded/corrupted packets

Interface counts: Pros and Cons

- Pros
 - Supported on all networking equipment
 - Little performance impact on routers
 - Little storage needs
- Cons
 - Missing data (SNMP uses UDP)
 - Polling makes it hard to synchronize data from multiple interfaces
 - Coarse-grained measurements

Outline

- Motivation and definitions
- Tools for measuring traffic
 - Packet capture
 - Interface counts
 - Flow capture
- Traffic matrix
- Trace anonymization
- Summary

IP Flows

- Set of packets with common properties
 - Definition can vary
 - Traditional 5-tuple: src IP, dst IP, src port, dst port, protocol
 - Packets from one ingress to an egress point
- Packets that are "close" together in time
 - Maximum spacing between packets (e.g., 15 sec, 30 sec)

Flow ≠ application session

- Application session may be composed of multiple flows
- Packets in application session may not follow same links
- Hard to measure application session inside the network

Capturing flow statistics in routers

- Basic method
 - Specify set of properties that define a flow
 - Router log statistics per flow (flow records)
 - Push flow records to collecting process (IPFIX)

Flow records: Flow identifier

- Packet header information
 - Source and destination IP addresses
 - Source and destination TCP/UDP port numbers
 - Other IP & TCP/UDP header fields (e.g., protocol, ToS bits)
- Routing information
 - Input and output interfaces
 - Source and destination IP prefix (mask length)
 - Source and destination autonomous system numbers

Flow records: Flow properties

- Aggregate traffic information
 - Start and finish time of the flow (time of first & last packet)
 - Total number of bytes and number of packets in the flow
 - TCP flags (e.g., logical OR over the sequence of packets)

Packet Sampling

- Packet sampling before flow creation
 - 1-out-of-m sampling of individual packets (e.g., m=100)
 - Creation of flow records over the sampled packets
- Reducing overhead
 - Avoid per-packet overhead on (m-1)/m packets
 - Avoid creating records for a large number of small flows
- Increasing overhead (in some cases)
 - May split some long transfers into multiple flow records
 - ... due to larger time gaps between successive packets

Tools

- In-router capture
 - Cisco NetFlow
 - Juniper JFlow
- Collection and post-processing
 - Flow-tools
 - ntop

Flow monitoring: Pros and Cons

Pros

- More details about traffic compared to counters
- Lower measurement volume than full packet traces
- Available on high-end line cards (Netflow, Jflow)
- Control over overhead via aggregation and sampling

Cons

- Less details than packet capture
 - No individual packet arrival times
 - No information on packet content
- Not uniformly supported (getting better with IPFIX)
- Computation/memory requirements for the flow cache

Using the traffic data in network operations

- Interface counts: everywhere
 - Tracking link utilizations and detecting anomalies
 - Generating bills for traffic on customer links
 - Inference of the offered load (i.e., traffic matrix)
- Packet monitoring: selected locations

 Analyzing the small time-scale behavior of traffic
 Troubleshooting specific problems on demand
- Flow monitoring: selective, e.g,. network edge
 - Tracking the application mix
 - Direct computation of the traffic matrix
 - Input to denial-of-service attack detection

Outline

- Motivation and definitions
- Tools for measuring traffic
 - Packet capture
 - Interface counts
 - Flow capture
- Traffic matrix
- Trace anonymization
- Summary

Traffic matrix: Definition

 Representation of traffic volume flowing from sources to destinations

- Links
- Routers
- Points of Presence (PoPs)
- Networks

- Bytes
- Packets
- Flows, etc.

Usage

- Capacity planning
- Traffic engineering (IGP and BGP)
- Billing
- Peering analysis
- Anomaly detection
- Design of new protocols

Ingress router to egress router matrix

Measuring the traffic matrix

- Packet capture
 - Gives the most detailed view of traffic
 - But, expensive and high collection overhead
- Flow capture
 - Enough to build traffic matrix
 - Lower collection overhead (in particular with sampling)
- Interface counts
 - Cannot directly measure traffic matrix, must estimate
 - Lowest overhead, widely available

Outline

- Motivation and definitions
- Tools for measuring traffic
 - Packet capture
 - Interface counts
 - Flow capture
- Traffic matrix
- Trace anonymization
- Summary

Benefits of sharing data

- Good scientific practice
- Get others to work on relevant problems
- Learn from analysis of others
- Get broader view

But, packet traces contain lots of sensitive information

- Headers
 - Connection endpoints: who is talking to who; sites visited
 - Protocol, ports: applications used
- Payload
 - Visited content
 - Passwords, etc.

Solution: Anonymization

- Process to sanitize data to ensure anonymity
 - Absence of identity
 - Prevent others from linking identity to actions of an individual
- Packet trace anonymization tools
 - tcpdpriv, ipsumdump, ip2anonip, Crypto-PAn,
 PktAnon

Anonymizing payload

- Payload contains most sensitive information
 - Better if removed completely
 - If not possible, get minimum necessary
 - E.g., HTTP host better than full URL

Anonymizing packet headers

- Packet headers can be shared with care
 - MAC addresses
 - Potential to link records with the same MAC across datasets
 - IP addresses often need to be anonymized
 - IP addresses appear in other parts of the packet
 - IP options (e.g., record route)
 - ICMP/DNS packets

Outline

- Motivation and definitions
- Tools for measuring traffic
 - Packet capture
 - Interface counts
 - Flow capture
- Traffic matrix
- Trace anonymization
- Summary

Summary

- Packet capture
 - Detailed per-packet measurements; high overhead
- Interface counts
 - Coarse measurements per link; low overhead
- Flow capture
 - More details than link counts, less than packet captures
 - Medium collection overhead controlled with sampling
- Traffic matrix
 - Measured from flow capture
- Trace aonymization is key for data sharing

Questions?